Electrophilic Additions to Diphosphenes ($\mathrm{RP}=\mathbf{P R}$)

A. H. Cowley,* J. E. Kilduff, N. C. Norman, and M. Pakulski

Department of Chemistry
The University of Texas at Austin Austin. Texas 78712

J. L. Atwood* and W. E. Hunter

Department of Chemistry, University of Alabama University, Alabama 35486

Received March 11, 1983
The deployment of ligands with large steric bulk has permitted the recent isolation of compounds with $\mathrm{Si}=\mathrm{Si}_{1}{ }^{1} \mathrm{Ge}=\mathrm{Ge},{ }^{2} \mathrm{Sn}=\mathrm{Sn},{ }^{3}$ and $\mathrm{P}=\mathrm{P}^{4}$ double bonds. However, despite the considerable progress made in the synthesis of these novel species, relatively little is known about their reactivities. ${ }^{5}$ We report (i) that diphosphenes undergo facile electrophilic attack, (ii) differences in the reactivities of alkyl- and aryl-substituted diphosphenes $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CP}=\mathrm{PC}\left(\mathrm{SiMe}_{3}\right)_{3}$ (1) and $\left(2,4,6-(t-\mathrm{Bu})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{P}=\mathrm{P}$ -(2,4,6-($\left.t-\mathrm{Bu})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)(2)$, and (iii) an X-ray crystal structure determination of 1 .

Treatment of a solution of 1 in $\mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ with an equimolar quantity of dry, gaseous HCl led to fading of the yellow-orange color and the formation of the white solid $\left[\left(\mathrm{SiMe}_{3}\right)_{3} \mathrm{CP}(\mathrm{H}) \mathrm{P}(\mathrm{Cl}) \mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{3}\right]$ (3). The high-resolution mass

3
spectrum (HRMS) for 3 showed the following (M^{+}): calcd 560.2081 , found 560.2095 . The $32.38-\mathrm{MHz}^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 3 exhibited two AX patterns of unequal intensity. For the more intense spectrum, (3A): $\delta_{\mathrm{P}_{\mathrm{A}}}-36.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=224.7\right.$ $\mathrm{Hz}), \delta_{\mathrm{P}_{\mathrm{B}}} 173.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=224.7 \mathrm{~Hz}\right)$. For the less intense spectrum, (3B): $\delta_{\mathrm{PA}_{\mathrm{A}}}-29.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=380.8 \mathrm{~Hz}\right), \delta_{\mathrm{P}_{\mathrm{B}}} 154.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{PP}}=380.8\right.$ Hz). The following ${ }^{1} \mathrm{H}$ couplings were obtained from the ${ }^{1} \mathrm{H}$ coupled ${ }^{31} \mathrm{P}$ spectrum, $3 \mathrm{~A}{ }^{1} J_{\mathrm{P}_{\mathrm{A}} \mathrm{H}}=201.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}_{\mathrm{B}} \mathrm{H}}=26.7 \mathrm{~Hz}$; $3 \mathrm{~B},{ }^{1} J_{\mathrm{P}_{\mathrm{A}}}=213.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}_{\mathrm{B}} \mathrm{H}}=25.3 \mathrm{~Hz}$. Treatment of 1 with an excess of gaseous HCl in $\mathrm{Et}_{2} \mathrm{O}$ resulted in cleavage of the phos-phorus-phosphorus bond and formation of $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CP}(\mathrm{H}) \mathrm{Cl}\right]$ (4). The HRMS for 4 showed the following $\left(\mathrm{M}^{+}\right)$: calcd 298.0924, found 298.0933 . ${ }^{31} \mathrm{P}$ NMR $\delta 70.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{PH}}=160.6 \mathrm{~Hz}\right.$). It was not possible to isolate a product analogous to 3 when 2 was treated with an equimolar quantity of HCl at $-78^{\circ} \mathrm{C}$. Instead, complete $\mathrm{P}=\mathrm{P}$ bond cleavage was observed resulting in $\left[\left(2,4,6-(t-\mathrm{Bu})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{P}(\mathrm{H}) \mathrm{Cl}\right](5)$. The HRMS for the $\mathrm{M}-1$ peak of $\mathbf{5}$ showed the following: calcd 311.1695 , found 311.1691 . ${ }^{31} \mathbf{P}$ NMR $\delta 26.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{PH}}=215.0 \mathrm{~Hz}\right.$). Phosphines of the type RP(H)(halogen) are remarkable because they are normally unstable. ${ }^{6}$

[^0]Differences in the reactivity of $\mathbf{1}$ and $\mathbf{2}$ were also apparent from protonation studies using $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$. Treatment of 1 with excess $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ for 2 h produced $\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{CPH}_{3}\right]\left[\mathrm{BF}_{4}\right](6) .{ }^{31} \mathrm{P}\right.$ NMR data for 6: $\delta-56.3\left(\mathrm{q},{ }^{1} J_{\mathrm{PH}}\right.$ $=502.2 \mathrm{~Hz}$). Protonation of $\mathbf{2}$ with excess $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-78^{\circ} \mathrm{C}$ resulted initially in a compound (7) with an $\mathrm{AX}^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (36.43 MHz). The corresponding ${ }^{1} \mathrm{H}$-coupled ${ }^{31} \mathrm{P}$ spectrum $\left(-50^{\circ} \mathrm{C}\right)$ showed additional coupling, thus indicating the attachment of one hydrogen to each phosphorus plus additional fine structure relating to $\mathrm{P}_{\mathrm{B}}: \delta_{\mathrm{P}_{\mathrm{A}}}-86.1$ (ddd, ${ }^{1} J_{\mathrm{PP}}$ $\left.=290 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}_{\mathrm{A}} \mathrm{H}_{\mathrm{A}}}=229.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}}=6.6 \mathrm{~Hz}\right), \delta_{\mathrm{P}_{\mathrm{g}}} 10.6(\mathrm{ddd}$, ${ }^{1} J_{\mathrm{PP}}=290 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}_{\mathrm{B}} H_{\mathrm{B}}}=481 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}_{\mathrm{B}} \mathrm{H}_{\mathrm{A}}}=9.8 \mathrm{~Hz}$). On the basis of these data we propose the structure shown in eq 1 for 7 . We

propose further that 7 arises via intramolecular $\mathrm{C}-\mathrm{H}$ oxidative addition of an initially formed two-coordinate phosphorus cation, 8. ${ }^{7}$ Warming of a solution of $\mathbf{2}$ in $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ resulted in $\mathrm{P}-\mathrm{P}$ bond cleavage and the formation of $9:{ }^{31} \mathrm{P}\left\{{ }^{2} \mathrm{H}\right\} \mathrm{NMR} \delta 17.7(\mathrm{t}$, ${ }^{1} J_{\mathrm{PH}}=528 \mathrm{~Hz}$).

An X-ray crystallographic study of $\mathbf{1}$ was undertaken ${ }^{8}$ because of the differences in reactivity of $\mathbf{1}$ and $2 .{ }^{9}$ There are two crystallographically independent molecules (A and B) in the asymmetric unit, and each contains a crystallographic center of inversion at the midpoint of the $\mathrm{P}=\mathrm{P}$ bond (Figure 1). The phosphorus-phosphorus bond length in molecule A is 2.014 (6) \AA while that in molecule B is 2.004 (6) \AA; cf. 2.034 (2) \AA in $2 .{ }^{4 \mathrm{a}}$ The $\mathrm{P}-\mathrm{P}-\mathrm{C}$ angles in 1 are approximately 6° wider than those

[^1]

Figure 1. View of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CP}=\mathrm{PC}\left(\mathrm{SiMe}_{3}\right)_{3}$ (1) showing the atom numbering scheme. Pertinent metric parameters for molecule A: P-(1)- $\mathrm{P}(1)^{\prime} 2.014$ (6), $\mathrm{P}(1)-\mathrm{C}(1) 1.85$ (1) $\AA ; \angle \mathrm{P}(1)^{\prime}-\mathrm{P}(1)-\mathrm{C}(1) 108.2(4)^{\circ}$. For molecule $\mathrm{B}: ~ \mathrm{P}(1)-\mathrm{P}(1)^{\prime} 2.004$ (6), $\mathrm{P}(1)-\mathrm{C}(1) 1.87$ (1) $\AA ; \angle \mathrm{P}(1)^{\prime}-$ $\mathrm{P}(1)-\mathrm{C}(1) 108.9(4)^{\circ}$.
in 2, presumably as a result of the larger size of $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}{ }_{3} \mathrm{C}\right.$ over $\left(2,4,6-(t-\mathrm{Bu}){ }_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$. We suggest that this difference in ligand size is responsible for the stability of the HCl addition product 3 and the absence of a corresponding product from the reaction of 2 with HCl .

Acknowledgment. Generous financial support from the National Science Foundation (Grant CHE-8205871) and the Robert A. Welch Foundation is gratefully acknowledged.

Supplementary Material Available: Tables of atomic coordinates, thermal parameters, bond lengths, and bond angles (4 pages). Ordering information is given on any current masthead page.

Vinyl Hydrogen Activation in Mono- and Dinuclear (η^{5}-Cyclopentadienyl)(hexatriene)cobalt Complexes. Thermal and Photochemical Hydrogen Shifts of Complementary Stereochemistry

Joseph A. King, Jr., and K. Peter C. Vollhardt*

Department of Chemistry
University of California, Berkeley, California 94720
Materials and Molecular Research Division Lawrence Berkeley Laboratory, Berkeley, California 94720

Received January 31, 1983
The activation of $\mathrm{C}-\mathrm{H}$ bonds in hydrocarbons by soluble transition-metal complexes has been the focus of intensive recent research. ${ }^{1}$ Its vinyl variant has been relatively unexplored, ${ }^{2}$ having

[^2]

Figure 1. ORTEP drawing of 2 including selected bond lengths (angstroms). Ellipsoids are scaled to represent 50% probability surface. The hydrogen positions shown are those calculated on the basis of idealized geometry following their locations on the difference Fourier electron density map.

Scheme I

frequently been restricted to low-yielding complex cluster reactions. ${ }^{3}$ It also suffers from little mechanistic understanding. This is surprising, considering the ready availability of alkenes such

[^3]
[^0]: (1) (a) West, R.; Fink, M. J.; Michl, J. Science (Washington, D.C.) 1981 214, 1343. (b) Masamune, S.; Hanzawa, Y.; Murakami, S.; Bally, T.; Blount, J. F. J. Am. Chem. Soc. 1982, I04, 1150 . (c) Boudjouk, P.; Han, B.-H.; Anderson, K. R. Ibid. 1982, 104, 4992.
 (2) Masamune, S.; Hanzawa, Y.; Williams, D. J. J. Am. Chem. Soc. 1982, 104, 6136.
 (3) For a discussion of the bonding in the $\left[\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{CH}\right]_{2} \mathrm{Sn}$, see: Fjeldberg, T.; Haaland, A.; Lappert, M. F.; Schilling, B. E. R.; Seip, R.; Thorne, A. J. J. Chem. Soc., Chem. Commun. 1982, 1407, and references therein.
 (4) (a) Yoshifuji, M.; Shima, I.; Inamoto, N.; Hirotsu, K.; Higuchi, T. J. Am. Chem. Soc. 1981, I03, 4587. (b) Cowley, A. H.; Kilduff, J. E.; Newman, T. H.; Pakulski, M. Ibid. 1982, 104, 5820. (c) Bertrand, G.; Couret, C.; Escudie, J.; Majid, S.; Majoral, J.-P. Tetrahedron Lett. 1982, 23, 3567. (d) Cetinkaya, B.; Hudson, A.; Lappert, M. F.; Goldwhite, H. J. J. Chem. Soc., Chem. Commun. 1982, 609. (e) Cetinkaya, B.; Hitchcock, P. B.; Lappert, M. F.; Thorne, A. J.; Goldwhite, H. Ibid, 1982, 691, (f) Couret, C.; Escudie, J.; Satge, J. Tetrahedron Lett. 1982, 23, 4941.
 (5) For a preliminary account of the reactivity of (mes) $\mathbf{2}_{2} \mathrm{Si}=\mathrm{Si}(\mathrm{mes})_{2}$ (mes $=$ mesityl) see: Fink, M. J.; De Young, D. J.; West, R.; Michl, J. J. Am. Chem. Soc. 1983, 105, 1070.

[^1]: (6) the only exception is when $\mathrm{R}=\mathrm{CF}_{3}$ (Dobbie, R. C.; Goshij, P. D.; Straughan, B. P. J. Chem. Soc., Dalton Trans. 1975, 2368) or when RP(H)(halogen) is coordinated to a transition metal: Marinetti, A.; Mathey, F. Organometalics 1982, $I, 1488$ and references therein.
 (7) Previously we have demonstrated that two-coordinate phosphenium cations undergo $\mathrm{C}-\mathrm{H}$ oxidative addition reactions. See: (a) Cowley, A. H.; Kemp, R. A.; Stewart, C. A. J. Am. Chem. Soc. 1982, 104, 3239. (b) Cowley, A. H.; Mehrotra, S. K. Ibid. 1983, 105, 2074. For ring closures of 2,4,6(t - Bu$)_{3} \mathrm{C}_{6} \mathrm{H}_{2}$-phosphorus compounds, see: (c) Baceiredo, A.; Bertrand, G.; Mazerolles, P.; Majoral, J.-P. J. Chem. Soc., Chem. Commun. 1981, 1197 (d) Yoshifuji M.; Shima, I.; Ando, K.; Inamoto, N. Tetrahedron Lett. 1983, 24, 933.
 (8) A crystal of dimensions $1.0 \times 0.6 \times 0.3 \mathrm{~mm}$ was sealed under dry nitrogen in a Lindemann capillary and mounted on an Enraf-Nonius CAD-4 automated diffractometer. A total of 2275 reflections were measured to 2θ max of 36° by using Mo K α radiation ($0.71069 \AA$) and a graphite monochromator. Of these 2046 reflections were considered observed. Compound 1 crystallizes in the triclinic space group $P \bar{I}$ with $Z=4$. The unit-cell dimensions are $a=16.629$ (7) $\AA, b=9.155$ (5) $\AA, c=12.482$ (6) $\AA, \alpha=$ $91.58(4)^{\circ}, \beta=111.42(5)^{\circ}, \gamma=90.02(4)^{\circ}$. No absorption or extinction corrections were applied. The structure was solved by direct methods using the shelx program system. The final R and R_{w} values were 0.086 and 0.086 Tables of atomic coordinates, thermal parameters, bond lengths and bond angles are available as supplementary material.
 (9) After the submission of this paper two reports on the reactivity of diphosphenes have appeared: (a) Niecke, E.; Rüger, R. Angew Chem., Int. Ed. Engl. 1983, 22, 155. (b) Yoshifuji, M.; Ando, K.; Toyota, K.; Shima, I.; Inamoto, N. J. Chem. Soc., Chem. Commun. 1983, 419.

[^2]: (1) See, for example: (a) Parshall, G. W. "Homogeneous Catalysis"; Wiley: New York, 1980. (b) Parshall, G. W. Acc. Chem. Res. 1975, 4, 113-117. (c) Shilov, A. E.; Shteinman, A. A. Coord. Chem. Rev. 1977, 24, 97-143. (d) Jones, W. D.; Feher, F. J. J. Am. Chem. Soc. 1982, 104, 4240-4242. (e) Crabtree, R. H.; Demou, P. C.; Eden, D.; Mihelcic, J. M.; Parnell, C. A.; Quirk, J. M.; Morris, G. E. Ibid. 1982, 104, 6994-7001. (f) Janowicz, A. H.; Bergman, R. G. Ibid. 1982, I04, 352-354. (g) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., Chem. Commun. 1980, 1243-1244 and the references therein.

[^3]: (2) See, for example: (a) Brown, T. L.; Nubel, P. O. J. Am. Chem. Soc. 1982, 104, 4955-4957. (b) Franzreb, K. H.; Kreiter, C. G. Z. Naturforsch., B 1982, 37B, 1058-1069. (c) Aumann, R.; Henkel, G.; Krebs, B. Angew. Chem. 1982, 94, 218; Angew. Chem., Int. Ed. Engl. 1982, 21, 204; Angew. Chem. Supp. 1982, 506-512. (d) Herrmann, W. A.; Weichmann, J.; Balbach, B.; Ziegler, M. L. J. Organomet. Chem. 1982, 231, C69-C72. (e) Eisenstadt, A.; Efraty, A. Organometallics 1982, 1, 1100-1101. (f) Nubel, P. O.; Brown, T. L. J. Am. Chem. Soc. 1982, 104, 4955-4957. (g) Dyke, A. F.; Guerchais, J. E.; Knox, S. A. R.; Roue, J.; Short, R. L.; Taylor, G. E.; Woodward, P. J. Chem. Soc., Chem. Commun. 1981, 537-538. (h) Caddy, P.; Green, M.; Smart, L. E.; White, N. Ibid. 1978, 839-841. (i) Goddard, R.; Knox, S. A. R.; Stone, F. G. A.; Winter, M. J.; Woodward, P. Ibid. 1976, 559-560. (j) Volger, H. C. Recl. Trav. Chim, Pays-Bas 1967, 86, 677-686.
 (3) See, for example: (a) Evans, J.; McNulty, G. S. J. Chem. Soc., Dalton Trans. 1981, 2017-2020. (b) Jackson, P. F.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Will, G. J.; McPartlin, M.; Nelson, W. J. H. J. Chem. Soc., Chem. Commun. 1980, 1190-1191. (c) Johnson, B. F. G.; Kelland, J. W.; Lewis, J.; Mann, A. L.; Raithby, P. R. Ibid. 1980, 547-549. (d) Bhaduri, S.; Johnson, B. F. G.; Kelland, J. W.; Lewis, J.; Raithby, P. R.; Rehani, S.; Sheldrick, G. M.; Wong, K.; McPartlin, M. J. Chem. Soc., Dalton Trans. 1979, 562-568. (e) Ferrari, R. P., Vaglio, G. A. J. Organomet. Chem. 1979, 182, 245-249. (f) Pierpont, C. G.; Stuntz, G. F.; Shapley, J. R. J. Am. Chem. Soc. 1978, $100,616-618$. (g) Johnson, B. F. G.; Kelland, J. W.; Lewis, J.; Rehani, S. K. J. Organomet. Chem. 1976, 113, C42-C44, (h) Deeming, A. J.; Hasso, S.; Underhill, M. J. Chem. Soc., Dalton Trans. 1975, 1614-1620. (i) Keister, J. B.; Shapley, J. R. J. Organomet. Chem. 1975, 85, C29-C31. (j) Deeming, A. J.; Underhill, M. J. Chem. Soc., Dalton Trans. 1974, 1415-1419.

